Fluoroquinolone-Gyrase-DNA Complexes
نویسندگان
چکیده
منابع مشابه
Fluoroquinolone Binding to DNA Gyrase
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes due to the presence of DNA breaks, have been crystallized an...
متن کاملBypassing Fluoroquinolone Resistance with Quinazolinediones: Studies of Drug–Gyrase–DNA Complexes Having Implications for Drug Design
Widespread fluoroquinolone resistance has drawn attention to quinazolinediones (diones), fluoroquinolone-like topoisomerase poisons that are unaffected by common quinolone-resistance mutations. To better understand differences between quinolones and diones, we examined their impact on the formation of cleaved complexes (drug-topoisomerase-DNA complexes in which the DNA moiety is broken) with gy...
متن کاملCrystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis.
Mycobacterium tuberculosis (Mtb) infects one-third of the world's population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. ...
متن کاملDeoxynybomycins inhibit mutant DNA gyrase and rescue mice infected with fluoroquinolone-resistant bacteria
Fluoroquinolones are one of the most commonly prescribed classes of antibiotics, but fluoroquinolone resistance (FQR) is widespread and increasing. Deoxynybomycin (DNM) is a natural-product antibiotic with an unusual mechanism of action, inhibiting the mutant DNA gyrase that confers FQR. Unfortunately, isolation of DNM is difficult and DNM is insoluble in aqueous solutions, making it a poor can...
متن کاملDNA gyrase and topoisomerase IV mutations associated with fluoroquinolone resistance in Proteus mirabilis.
Mutations associated with fluoroquinolone resistance in clinical isolates of Proteus mirabilis were determined by genetic analysis of the quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE. This study included the P. mirabilis type strain ATCC 29906 and 29 clinical isolates with reduced susceptibility (MIC, 0.5 to 2 microg/ml) or resistance (MIC, > or =4 microg/ml) to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2014
ISSN: 0021-9258
DOI: 10.1074/jbc.m113.529164